您好,欢迎访问

商机详情 -

光干涉膜厚仪排名

来源: 发布时间:2024年05月30日

光谱拟合法易于测量具有应用领域 ,由于使用了迭代算法,因此该方法的优缺点在很大程度上取决于所选择的算法。随着各种全局优化算法的引入,遗传算法和模拟退火算法等新算法被用于薄膜参数的测量。其缺点是不够实用,该方法需要一个较好的薄膜的光学模型(包括色散系数、吸收系数、多层膜系统),但是在实际测试过程中,薄膜的色散和吸收的公式通常不准确,尤其是对于多层膜体系,建立光学模型非常困难,无法用公式准确地表示出来。在实际应用中只能使用简化模型,因此,通常全光谱拟合法不如极值法有效。另外该方法的计算速度慢也不能满足快速计算的要求。精度高的白光干涉膜厚仪通常采用Michelson干涉仪的结构。光干涉膜厚仪排名

光干涉膜厚仪排名,膜厚仪

干涉法与分光光度法都是利用相干光形成等厚干涉条纹的原理来确定薄膜厚度和折射率 ,然而与薄膜自发产生的等倾干涉不同,干涉法是通过设置参考光路,形成与测量光路间的干涉条纹,因此其相位信息包含两个部分,分别是由参考平面和测量平面间扫描高度引起的附加相位和由透明薄膜内部多次反射引起的膜厚相位。干涉法测量光路使用面阵CCD接收参考平面和测量平面间相干波面的干涉光强分布,不同于以上三种点测量方式,可一次性生成薄膜待测区域的表面形貌信息,但同时由于存在大量轴向扫描和数据解算,完成单次测量的时间相对较长。白光干涉膜厚仪工厂标准样品的选择和使用对于保持仪器准确度至关重要。

光干涉膜厚仪排名,膜厚仪

本文研究的锗膜厚度约为300nm,导致白光干涉输出的光谱只有一个干涉峰,无法采用常规的基于相邻干涉峰间距解调的方案,如峰峰值法等。为此,研究人员提出了一种基于单峰值波长移动的白光干涉测量方案,并设计制作了膜厚测量系统。经实验证明,峰值波长和温度变化之间存在很好的线性关系。利用该方案,研究人员成功测量了实验用锗膜的厚度为338.8nm,实验误差主要源于温度控制误差和光源波长漂移。该论文通过对纳米级薄膜厚度测量方案的研究,实现了对锗膜和金膜厚度的测量,并主要创新点在于提出了基于白光干涉单峰值波长移动的解调方案,并将其应用于极短光程差的测量。

白光扫描干涉法采用白光为光源 ,压电陶瓷驱动参考镜进行扫描 ,干涉条纹扫过被测面,通过感知相干峰位置来获得表面形貌信息。测量原理图如图1-5所示。而对于薄膜的测量,上下表面形貌、粗糙度、厚度等信息能通过一次测量得到,但是由于薄膜上下表面的反射,会使提取出来的白光干涉信号出现双峰形式,变得更复杂。另外,由于白光扫描法需要扫描过程,因此测量时间较长而且易受外界干扰。基于图像分割技术的薄膜结构测试方法,实现了对双峰干涉信号的自动分离,实现了薄膜厚度的测量。随着技术的进步和应用领域的拓展,白光干涉膜厚仪的性能和功能将不断提高和扩展。

光干涉膜厚仪排名,膜厚仪

常用的白光垂直扫描干涉系统的原理是:入射的白光光束通过半反半透镜进入到显微干涉物镜,被分光镜分成两部分,一部分入射到固定的参考镜,另一部分入射到样品表面,当参考镜表面和样品表面的反射光再次汇聚后,发生干涉,干涉光通过透镜后,利用电荷耦合器(CCD)探测双白光光束的干涉图像。通过Z向精密位移台带动干涉镜头或样品台Z向扫描,获得一系列干涉图像。根据干涉图像序列中对应点的光强随光程差变化曲线,可得该点的Z向相对位移;然后,通过CCD图像中每个像素点光强最大值对应的Z向位置,可测量被测样品表面的三维形貌。该系统具有高分辨率和高灵敏度等特点,广泛应用于微观表面形貌测量和薄膜厚度测量等领域。膜厚仪的干涉测量能力较高,可以提供精确和可信的膜层厚度测量结果。膜厚仪找哪家

随着技术的不断进步和应用领域的扩展,白光干涉膜厚仪的性能和功能将得到进一步提高;光干涉膜厚仪排名

傅里叶变换是白光频域解调方法中一种低精度的信号解调方法 。早是由G.F.Fernando和T.Liu等人提出,用于低精度光纤法布里-珀罗传感器的解调。因此,该解调方案的原理是通过傅里叶变换得到频域的峰值频率从而获得光程差,进而得到待测物理量的信息。傅里叶变换解调方案的优点是解调速度较快,受干扰信号的影响较小。但是其测量精度较低。根据数字信号处理FFT(快速傅里叶变换)理论,若输入光源波长范围为[]λ1,λ2,则所测光程差的理论小分辨率为λ1λ2/(λ2−λ1),所以此方法主要应用于对解调精度要求不高的场合。傅里叶变换白光干涉法是对傅里叶变换法的改进。该方法总结起来就是对采集到的光谱信号做傅里叶变换,然后滤波、提取主频信号后进行逆傅里叶变换,然后做对数运算,并取其虚部做相位反包裹运算,由获得的相位得到干涉仪的光程差。该方法经过实验证明其测量精度比傅里叶变换高。光干涉膜厚仪排名