您好,欢迎访问

商机详情 -

广东如何共模电感性能

来源: 发布时间:2024年04月06日

线路滤波器防止在电子设备和AC线路之间产生过多噪音;一般而言,重点还是对AC线路的保护。在AC线路(通过全阻抗匹配电路)和(噪音)电源转换器之间使用共模滤波器的情况。共模噪音(噪音在接地的两条线路上同时产生)的运动方向是从负载端进入滤波器,这样两个线路共有的噪音得到很大衰减。滤波器加到AC线路(通过全阻抗匹配电路)上的输出小到可以忽略不计 [2]  。设计共模滤波器必须设计两个相同的差动滤波器。其中每个滤波器分别对应两极的线路, 而每一边的感应器分别耦合一个磁芯 [2]  。线圈应尽可能绕制单层,这样做可减小线圈的寄生电容,增强线圈对瞬时过电压的承受能力。广东如何共模电感性能

广东如何共模电感性能,共模电感

分布电容任何电感线圈,其匝与匝之间、层与层之间,线圈与参考地之间,线圈与磁屏蔽罩间等都存在一定的电容,这些电容称为电感线圈的分布电容。若将这些分布电容综合在一起,就成为一个与电感线圈并联的等效电容C。分布电容的存在使线圈的Q值减小,稳定性变差,因而线圈的分布电容越小越好。额定电流额定电流是指电感器有正常工作时反允许通过的最大电流值。若工作电流超过额定电流,则电感器就会因发热而使性能参数发生改变,甚至还会因过流而烧毁。龙华区如何共模电感结构共模扼流圈管芯两侧的磁场相互抵消,因此不存在磁通使管芯饱和。

广东如何共模电感性能,共模电感

以主板上的两条PCB走线(连接主板各元件的导线)为例,所谓串模干扰,指的是两条走线之间的干扰;而共模干扰则是两条走线和PCB地线之间的电位差引起的干扰。串模干扰电流作用于两条信号线间,其传导方向与波形和信号电流一致;共模干扰电流作用在信号线路和地线之间,干扰电流在两条信号线上各流过二分之一且同向,并以地线为公共回路。如果板卡产生的共模电流不经过衰减过滤(尤其是像USB和IEEE 1394接口这种高速接口走线上的共模电流),那么共模干扰电流就很容易通过接口数据线产生电磁辐射——在线缆中因共模电流而产生的共模辐射。

只有了解了板卡整体的防EMI设计,我们才可以评价板卡的优劣。那么,的板卡设计在防EMI性能上一般都会做哪些工作呢?1.主板Layout(布线)设计对的主板布线设计而言,时钟走线大多会采用屏蔽措施或者靠近地线以降低EMI。对多层PCB设计,在相邻的PCB走线层会采用开环原则,导线从一层到另一层,在设计上就会避免导线形成环状。如果走线构成闭环,就起到了天线的作用,会增强EMI辐射强度。信号线的不等长同样会造成两条线路阻抗不平衡而形成共模干扰,因此,在板卡设计中都会将信号线以蛇形线方式处理使其阻抗尽可能的一致,减弱共模干扰。同时,蛇形线在布线时也会限度地减小弯曲的摆幅,以减小环形区域的面积,从而降低辐射强度。如果共模扼流圈达到饱和,那么在输入浪涌增加时,发射将会增加。

广东如何共模电感性能,共模电感

电感是导线内通过交流电流时,在导线的内部及其周围产生交变磁通,导线的磁通量与生产此磁通的电流之比。当电感中通过直流电流时,其周围只呈现固定的磁力线,不随时间而变化;可是当在线圈中通过交流电流时,其周围将呈现出随时间而变化的磁力线。根据法拉弟电磁感应定律——磁生电来分析,变化的磁力线在线圈两端会产生感应电势,此感应电势相当于一个“新电源“。当形成闭合回路时,此感应电势就要产生感应电流。由楞次定律知道感应电流所产生的磁力线总量要力图阻止原来磁力线的变化的。如果共模扼流圈达到强饱和,发射强度与不加滤波器时的情况是一样的,也就是说很容易达到40dB以上。盐田区制作共模电感检测

为了测量共模辐射,电流探头应夹在这些载有极小线电流的导线近旁。广东如何共模电感性能

在高速PCB设计中,走线的长度一般都不会是时钟信号波长1/4的整数倍,否则会产生谐振,产生严重的EMI辐射。同时走线要保证回流路径小而且通畅。对去耦电容的设计来说,其设置要靠近电源管脚,并且电容的电源走线和地线所包围的面积要尽可能地小,这样才能减小电源的纹波和噪声,降低EMI辐射。当然,上述只是PCB防EMI设计中的一小部分原则。主板的Layout设计是一门非常复杂而精深的学问,甚至很多DIYer都有这样的共识:Layout设计得与否,对主板的整体性能有着极为重大的影响。广东如何共模电感性能

爱普微科技(深圳)有限公司汇集了大量的优秀人才,集企业奇思,创经济奇迹,一群有梦想有朝气的团队不断在前进的道路上开创新天地,绘画新蓝图,在广东省等地区的电工电气中始终保持良好的信誉,信奉着“争取每一个客户不容易,失去每一个用户很简单”的理念,市场是企业的方向,质量是企业的生命,在公司有效方针的领导下,全体上下,团结一致,共同进退,**协力把各方面工作做得更好,努力开创工作的新局面,公司的新高度,未来爱普微科技供应和您一起奔向更美好的未来,即使现在有一点小小的成绩,也不足以骄傲,过去的种种都已成为昨日我们只有总结经验,才能继续上路,让我们一起点燃新的希望,放飞新的梦想!