您好,欢迎访问

商机详情 -

福田区如何APV电感量大从优

来源: 发布时间:2024年03月26日

1 片式叠层陶瓷介质电容器 在片式电容器里用得多的是片式叠层陶瓷介质电容器。片式叠层陶瓷电容器(MLCC),简称片式叠层电容器(或进一步简称为片式电容器),是由印好电极(内电极)的陶瓷介质膜片以错位的方式叠合起来,经过一次性高温烧结形成陶瓷芯片,再在芯片的两端封上金属层(外电极),从而形成一个类似独石的结构体,故也叫独石电容器,如图1所示。图1表明,片式叠层陶瓷电容器是一个多层叠合的结构,其实质是由多个简单平行板电容器的并联体。因此,该电容器的电容量计算公式为C=NKA/t磁珠主要用于高频隔离,抑制差模噪声等。福田区如何APV电感量大从优

福田区如何APV电感量大从优,APV电感

为了在高频时也有较好的旁路作用,必须让旁路电容的自谐振频率也较高,所以电容器的引线不能长。另外,旁路电容也不是越大越好,电容大,自谐振的频点偏低。所以,的办法是通过试验来选择合适的电容,尽可能让要抑制的干扰频率与自谐振点一致,以便使担当滤波的电容器带来的插入损耗为。由于普通的两端电容有引线电感,所以总的剩余电感较大,自谐振点也比较低。为了改进普通引线式电容器的自谐振、且自谐振频率偏低的问题,村田制作所曾发展了一种引线式三端电容器,见图7。罗湖区如何APV电感性能在谐振电路中需要使用片式电感。

福田区如何APV电感量大从优,APV电感

④GRM15/18/21/31系列片式电容器可用在一般用途的电子设备中。村田制作所还生产一种排容,在一个器件中有2至4个电容,尤其适合在单片机的总线上使用,见图5。2)片式三端电容器我们平常使用的陶瓷圆片电容器作为旁路电容,可以将高频干扰短路到地,达到抗干扰的目的。但是电容器的引线电感及电容内部的剩余电感却限制了它的高频特性发挥。图6是普通电容器做高频旁路时的引线电感影响例。从图6中可见,电容器的插入损耗一开始随频率增加而增加,直至达到自谐振频率(等效电感与电容的串联谐振),插入损耗也达到最大值。此后,由于等效电感的感抗增大,使插入损耗开始下降。

当贴片电感通过的电流变化时,贴片电感中产生的直流电压势将阻止电流的变化。当通过电感线圈的电流增大时,电感线圈产生的自感电动势与电当通过电感线圈的电流减小时,自感电动势与电流方向相同,阻止电流的减小,同时释放出存储的能量,以补偿电流的减小。流方向相反,阻止电流的增加,同时将一部分电能转化成磁场能存储于电感之中;因此经电感滤波后,不但负载电流及电压的脉动减小,波形变得平滑,而且整流二极管的导通角增大。可以根据它对电磁干扰的抑制原理,合理使用它的抑制作用。

福田区如何APV电感量大从优,APV电感

当导线穿过这种铁氧体磁芯时,所构成的电感阻抗在形式上是随着频率的升高而增加,但是在不同频率时其机理是完全不同的。在低频段,阻抗由电感的感抗构成,低频时R很小,磁芯的磁导率较高,因此电感量较大,L起主要作用,电磁干扰被反射而受到抑制,并且这时磁芯的损耗较小,整个器件是一个低损耗、高Q特性的电感,这种电感容易造成谐振因此在低频段,有时可能出现使用铁氧体磁珠后干扰增强的现象。在高频段,阻抗由电阻成分构成,随着频率升高,磁芯的磁导率降低,导致电感的电感量减小,感抗成分减小 但是,这时磁芯的损耗增加,电阻成分增加,导致总的阻抗增加,当高频信号通过铁氧体时,电磁干扰被吸收并转换成热能的形式耗散掉。铁氧体磁珠还广泛应用于信号电缆的噪声滤除。福田区如何APV电感量大从优

在功率放大器的输出变压器上应用的磁性材料如果工作温度超过了居里温度,须臾之间就可以烧毁输出功率管。福田区如何APV电感量大从优

通常高频信号为30MHz以上,然而,低频信号也会受到片式磁珠的影响。磁珠有很高的电阻率和磁导率,等效于电阻和电感串联。在电路中只要导线穿过它即可。高频电流在其中以热量形式散发,其等效电路为一个电感和一个电阻串联,两个组件的值都与磁珠的长度成比例。有的磁珠上有多个孔洞,用导线穿过可增加组件阻抗(穿过磁珠次数的平方)。铁氧体磁珠不仅可用于电源电路中滤除高频噪声(可用于直流和交流输出),还可广泛应用于其它电路 [1]  。福田区如何APV电感量大从优

爱普微科技(深圳)有限公司汇集了大量的优秀人才,集企业奇思,创经济奇迹,一群有梦想有朝气的团队不断在前进的道路上开创新天地,绘画新蓝图,在广东省等地区的电工电气中始终保持良好的信誉,信奉着“争取每一个客户不容易,失去每一个用户很简单”的理念,市场是企业的方向,质量是企业的生命,在公司有效方针的领导下,全体上下,团结一致,共同进退,齐心协力把各方面工作做得更好,努力开创工作的新局面,公司的新高度,未来爱普微科技供应和您一起奔向更美好的未来,即使现在有一点小小的成绩,也不足以骄傲,过去的种种都已成为昨日我们只有总结经验,才能继续上路,让我们一起点燃新的希望,放飞新的梦想!