您好,欢迎访问

商机详情 -

海南集成式微流控芯片平台技术选择

来源: 发布时间:2024年05月03日

含光微纳在微流控产品研发的早期阶段就制定了试剂整合方案,这一方案被视为确保整个系统成功的关键。我们通过深入分析工作流程、试剂生产、包装方式以及芯片生产装配之间的相互关系,以创造出经济高效和可扩展的产品。在试剂管理和封装方面,我们提供多种解决方案,包括试剂的重组、混合和精确定量分配。这些方案包括表面处理方法,如表面亲水处理和表面疏水处理,以及试剂的包埋方式,如微阵列点样包埋、沟道表面修饰、试剂胶囊封装和冻干微球等。通过这些操作,我们确保产品的性能稳定可靠。我们的微流控芯片具有低能耗和环保特性,符合可持续发展的要求。海南集成式微流控芯片平台技术选择

海南集成式微流控芯片平台技术选择,微流控芯片

当考虑选择微流控芯片的材料时,曾经有人选择硅材料,原因包括硅的抗有机溶剂性、易于金属沉积、出色的导热性以及表面稳定性。然而,硅在制造微流控芯片中的应用受到一些限制,如制造复杂的活动部件的难度和光学检测时的不透明性。此外,硅的价格相对较高,限制了其广泛应用。随后,玻璃成为了构建微流控芯片的备选材料。玻璃具有明确的表面化学性质、的透明性、耐高压性、生物相容性、化学惰性等优势。它适合各种化学修饰和生物分析应用,并且不会对生物样品产生干扰。玻璃微流控芯片在毛细管电泳等领域有广泛应用。总之,硅和玻璃都有各自的优点,但在不同应用场景下可以做出选择。浙江硅基微流控芯片前景与竞争对手相比,我们的微流控芯片具有更高的性价比。

海南集成式微流控芯片平台技术选择,微流控芯片

在上世纪50年代末,美国诺贝尔物理学奖得主RichardFeynman教授提前预见到了未来制造技术将朝着微型化方向发展的趋势。他在1959年采用半导体材料,成功将实验中的机械系统微型化,这里可见为世界上早的微型电子机械系统(Micro-electro-mechanicalSystems,MEMS)之一,为未来微流控技术的诞生奠定了基础。然而,真正意义上的微流控技术是在1990年才正式诞生。当时,瑞士Ciba-Geigy公司的Manz与Widmer运用MEMS技术,在微小芯片上成功实现了以前只能在毛细管内完成的电泳分离,这标志着微流控技术的诞生,后来被称为微全分析系统(Micro-TotalAnalyticalSystem,ì-TAS),即我们所熟知的微流控芯片。这一技术革新开创了微流体领域的新纪元。

微流控芯片技术发展趋势(1)基于液滴微流控的超高通量筛选技术将对新药研发、生物工程酶的改进、结构生物学研究起到关键的推进作用;(2)微流控技术将成为单细胞分析的hexin工具,促进单细胞基因组学、蛋白组学、代谢组学的发展,从单细胞层次揭示新的分子机制、信号传导和代谢通路;(3)以数字PCR芯片和循环zhong瘤细胞CTC捕获芯片为daibiao的新型“液体活检”诊断工具,将可能突破当前aizheng早期诊断和术后疗效评估存在的技术瓶颈,成为新的aizheng诊断标准;(4)器官芯片和人体芯片技术的继续发展,可能在芯片上构建用于药物研究的仿生人体,从而xianzhu降低当前新药研究成本和研发周期;(5)微流控技术将在即时检验中扮演着越来越关键的作用,在传染病检测、环境监察、食品安全检测、农残检测、家用医疗仪器等方面具有强大的市场前景。使用微流控芯片,您可以实现实验的高度自动化,减少人力资源的投入。

海南集成式微流控芯片平台技术选择,微流控芯片

微流控芯片材料选型de原则

①芯片材料与芯片实验室的工作介质之间要有良好的化学和生物相容性,不发生反应;②芯片材料应有很好的电绝缘性和散热性;③芯片材料应具有良好的可修饰性,可产生电渗流或固载生物大分子;④芯片材料应具有良好的光学性能,对检测信号干扰小或无干扰;⑤芯片的制作工艺简单,材料及制作成本低廉。制作微流控芯片的主要材料有硅片、玻璃、聚二甲基硅氧烷(PDMS)、聚甲基丙烯酸甲酯、聚四氟乙烯和纸基等。其中PDMS的使用范围*为广fan。这种材料不仅加工简单、光学透明,而且具有一定的弹性,可以制作功能性的部件,如微阀和微蠕动泵等。PDMS微阀的密度可以达到30个/cm。但是PDMS材料容易吸附疏水性小分子,导致背景升高和检测偏差。为了克服非特异性吸附的问题,表面惰性且抗黏附的聚四氟乙烯材料开始被用于制作微流控芯片。纸基通常指的具有三维交错纤维结构的薄层材料,但是硝酸纤维素膜一般也常用于纸基微流控芯片的制作。因为纸基具有价格便宜、比表面积大和亲水毛细作用力等特点,通过结合疏水性图案化和纵向堆积等步骤,具有多元检测和多步操作集成等优点,非常适合制作便携易用的微流控芯片。 使用微流控芯片,您可以减少实验所需的样品和试剂用量,节省成本。上海什么是微流控芯片芯片解决方案

我们的微流控芯片支持多种样品处理和分析方法,满足不同实验需求。海南集成式微流控芯片平台技术选择

微流控在技术平台的难题:比如抗体的固定。非均相免疫分析是将抗原或抗体固定在固相载体表面,通过特异性免疫反应,将所需的抗体或抗原结合在固相载体表面形成抗原抗体复合物,通过简单的清洗即可实现抗原抗体复合物与游离抗原抗体的分离。因此,如何将抗体固定在微通道的表面成为非均相微流控免疫分析芯片的一个关键问题。有很多方法可以将抗体固定在通道表面,包括通道壁对抗体的直接吸附、共价结合在基底面形成活性功能基团、微接触印刷等技术。抗体等生物分子可以通过疏水作用直接吸附在疏水性微通道的表面,但是可能引起抗体的构相改变而导致活性降低。同时对微通道表面的封闭是非常重要的,通过封闭限制蛋白和小分子物质的非特异结合,这些非特异结合会影响分析效率。蛋白质的非特异性结合和抗体的变性使免疫分析的灵敏度比较大降低,因此对于微流控免疫分析芯片系统,采用合理的方法交联抗体显得非常重要。海南集成式微流控芯片平台技术选择