您好,欢迎访问

商机详情 -

杭州化学荧光寿命成像怎么用

来源: 发布时间:2023年02月07日

荧光寿命成像和生物发光的不同之处:产生光子的原理不同,类似于我们都是通过肉眼去观察萤火虫和发光水母一样,生物发光与荧光成像在本质上,都是机体中特定的细胞或材料发出光子,被高灵敏度的CCD检测到形成图像,但是生物发光与荧光寿命成像产生光子的过程和机制是完全不同的。生物发光与荧光成像相同点:都需要对细胞进行标记。生物发光产生的光子和荧光寿命成像产生的光子都可以被高灵敏的CCD检测并形成图像,就像一个人的眼睛就可以既看到萤火虫又可以看到发光水母一样。荧光寿命(FLT)是荧光团在发射光子并返回基态之前花费在激发态的时间。根据荧光基团的不同,FLT可以从皮秒到数百纳秒不等。随着技术的发展,在显微镜视野内进行超快速全像素荧光寿命信号采集的荧光寿命成像成为可能。杭州化学荧光寿命成像怎么用

荧光寿命成像具有什么优势?荧光寿命成像的优势:通过荧光强度成像可以获得荧光分子的空间分布,较为直接和简便,但是当荧光分子具有相似的频谱特性,或是同样的荧光分子在不同环境下时,依赖强度进行成像的方案便无法准确反映信息。与基于光强的成像方式不同,FLIM成像适用于测量荧光分子环境的变化,或是测量分子的运动情况。其结果与荧光分子浓度无关,且不受影响光强的光散射或是光吸收影响,可以精确测量荧光淬灭过程,对生物分子微环境进行定量测量。杭州化学荧光寿命成像怎么用荧光寿命成像可以定量的区分参与FRET和没有参与FRET的分子数量。

荧光寿命成像:荧光寿命是荧光团在发射荧光光子返回基态之前保持其激发态的平均时间长度。这取决于荧光团的分子组成和纳米环境。荧光寿命成像将寿命测量与成像相结合:对每个图像像素以测得的荧光寿命进行颜色编码,产生额外的图像反差。因此,荧光寿命成像可以提供关于荧光分子空间分布的信息和有关其生化状态或纳米环境的信息。有很多技术可以在显微镜环境中检测荧光寿命。常见的的是基于供体(受体光漂白,FRET AB)或受体(敏化发射,FRET SE)荧光强度的技术。

荧光寿命取决于荧光分子所处的微环境,通过对样品荧光寿命的测量和成像可以定量获取样品的功能信息。荧光分子受激发后发光,荧光寿命量化了发光的衰减率。该特征时间不但取决于特定的荧光团,还取决于其环境,分子相互作用影响弛豫过程并改变荧光团的寿命。荧光寿命是微环境的相对参数,不受环境吸收、样本浓度等因素影响,因此能够对生物组织环境中的 p H 值水平、离子浓度、氧分子浓度等微环境状态进行高精度检测。荧光寿命显微成像(FLIM),可以定位不同的分子及浓度分布,在生物,材料,半导体领域具有重要的应用价值。荧光寿命成像主要应用领域包括:用于样品分离。

荧光寿命成像主要应用领域包括:用于样品分离,如利用不同染料荧光寿命的差异将不同组织、正常与病变细胞等有效分离。荧光团在光谱上非常相似(max 580 vs 573)无法分离,但它们在荧光寿命上差异明显。作为生物传感器,如评价药物/理化条件对细胞的影响、Ca+震荡等。充分拓展了寿光命成像的使用范围,实现可相互验证的多维度样品成像。实现真正的生物动力学分析和功能成像。荧光寿命成像的发展很好地弥补了基于强度成像的问题,对生物医学检测有着重要的意义。荧光寿命成像和生物发光的不同之处是什么?杭州分子荧光寿命成像使用方法

荧光寿命成像是一种什么样的技术?杭州化学荧光寿命成像怎么用

荧光寿命成像技术是如何应用在生物医学中的?随着近年来对蛋白及分子功能研究的不断深入,科研工作者除对多色成像、钙成像等功能成像的需求日渐增多之外,对荧光寿命成像的需求也逐渐增加,而荧光寿命成像能提供除荧光强度、荧光光谱信息之外的荧光分子的寿命信息,可用于分子间相互作用(FRET)、分子所处微环境的离子浓度(如Ca2+、pH)及细胞代谢水平的改变等测量,并可拆分光谱重叠的荧光染料及染料和自发荧光,还可以结合荧光相关光谱对单分子实现荧光寿命相关光谱FLCS的测量。荧光寿命成像扩展了传统荧光成像的维度,是功能成像的理想工具,在生物医学领域有广阔的应用前景。杭州化学荧光寿命成像怎么用

波铭科仪,2013-06-03正式启动,成立了拉曼光谱仪,电动位移台,激光器,光电探测器等几大市场布局,应对行业变化,顺应市场趋势发展,在创新中寻求突破,进而提升爱特蒙特的市场竞争力,把握市场机遇,推动仪器仪表产业的进步。波铭科仪经营业绩遍布国内诸多地区地区,业务布局涵盖拉曼光谱仪,电动位移台,激光器,光电探测器等板块。我们在发展业务的同时,进一步推动了品牌价值完善。随着业务能力的增长,以及品牌价值的提升,也逐渐形成仪器仪表综合一体化能力。值得一提的是,波铭科仪致力于为用户带去更为定向、专业的仪器仪表一体化解决方案,在有效降低用户成本的同时,更能凭借科学的技术让用户极大限度地挖掘爱特蒙特的应用潜能。