您好,欢迎访问
标签列表 - ***公司
  • 红外荧光寿命成像哪家便宜

    荧光寿命显微成像(Fluorescence lifetime imaging microscopy,FLIM)是荧光寿命测量和荧光显微技术的结合,已普遍应用于生物医学研究和其他领域。FLIM具有高特异性、高灵敏度、可定量测量微环境变化和分子间相互作用、不受探针浓度、激发光强度和光漂白影响等优点。在过去的十年中,光学技术硬件和软件、材料科学和生物医学的迅速发展,共同促进了FLIM技术及其应用的巨大进步。尽管经过几十年的技术发展,FLIM技术在实际应用中仍然面临着一些挑战,例如:FLIM的成像分辨率也会受到光衍射的限制,因此,在实际应用中,我们经常需要在成像速度、图像质量和微环境寿命精度之间进行权...

  • 珠海单分子荧光寿命成像哪里有

    荧光寿命成像如何理解?荧光寿命成像主要通过TCSPC技术(Time-Correlated Single Photon Counting)实现。系统采用超短脉宽激光器作为激发光源,通过光路耦合器,将激光引入显微光路。激光通过物镜聚焦照射样品池,利用光子探测装置(PMT)对荧光信号进行探测,再用TCSPC计数器对每一个光子进行计数,并将其放入一个对应的时间窗口,经过一定时间的统计叠加后即得到荧光寿命曲线。几十万次重复以后,不同的时间通道累积下来的光子数目不同。以光子数对时间作图可得到荧光衰减曲线。实现从百ps-ns-us的瞬态测试。综上所述由于TCSPC系统,一个激光脉冲只采集一个光子信号,所以激...

  • 湖南显微荧光寿命成像有哪些

    荧光寿命成像技术是如何应用在生物医学中的?随着近年来对蛋白及分子功能研究的不断深入,科研工作者除对多色成像、钙成像等功能成像的需求日渐增多之外,对荧光寿命成像的需求也逐渐增加,而荧光寿命成像能提供除荧光强度、荧光光谱信息之外的荧光分子的寿命信息,可用于分子间相互作用(FRET)、分子所处微环境的离子浓度(如Ca2+、pH)及细胞代谢水平的改变等测量,并可拆分光谱重叠的荧光染料及染料和自发荧光,还可以结合荧光相关光谱对单分子实现荧光寿命相关光谱FLCS的测量。荧光寿命成像扩展了传统荧光成像的维度,是功能成像的理想工具,在生物医学领域有广阔的应用前景。生物发光与荧光寿命成像不同点:产生光子的原理不...

  • 广州分子荧光寿命成像多少钱

    荧光寿命是指分子受到光脉冲激发后返回基态之前在激发平均停留的时间,处于激发态的荧光分子在从激发到基态的过程中发射荧光释放能量。荧光寿命取决于荧光分子所处的微环境,通过对样品荧光寿命的测量和成像可以定量获取样品的功能信息。荧光寿命成像技术有两种:时间域和频率域。(1)时域FLIM:需要脉冲光源,所以一般在双光子的系统上比较常见FLIM(荧光寿命成像Fluorescence Life-time imaging Microcopy简称FLIM)。(2)频域FLIM:需要一个相位调制的光源,有用LED调制的, FLIM对很多研究都有帮助,以下为荧光寿命成像FLIM的应用:1)细胞体自身荧光寿命分析;2...

  • 上海植物荧光寿命成像好不好

    荧光寿命成像的优势是什么?荧光寿命成像具有不同于荧光强度成像的众多优点;不需要考虑跳色的影响,从而免去了计算和去除跳色杂质信号的麻烦;去除跳色杂质的准确性很大程度上依赖于信噪比、成像流程的设计和控制、以及跳色信号估算的算法,这些因素使得通过稳态光强度测量荧光寿命成像的精确度在很多时候受到质疑。稳态光强度的荧光寿命成像测量很容易受荧光标记光漂白或是激发光散射背景的影响,而这些因素对FLIM-FRET的测量影响相对较低。荧光寿命成像可以定量的区分参与FRET和没有参与FRET的分子数量,这样深入的定量分析是稳态光强度方法做不到的。荧光寿命成像特别适用于新材料、光子学、光伏、光催化、生物材料的原理探...

  • 深圳植物荧光寿命成像多少钱

    荧光寿命成像技术是如何应用在生物医学中的?随着近年来对蛋白及分子功能研究的不断深入,科研工作者除对多色成像、钙成像等功能成像的需求日渐增多之外,对荧光寿命成像的需求也逐渐增加,而荧光寿命成像能提供除荧光强度、荧光光谱信息之外的荧光分子的寿命信息,可用于分子间相互作用(FRET)、分子所处微环境的离子浓度(如Ca2+、pH)及细胞代谢水平的改变等测量,并可拆分光谱重叠的荧光染料及染料和自发荧光,还可以结合荧光相关光谱对单分子实现荧光寿命相关光谱FLCS的测量。荧光寿命成像扩展了传统荧光成像的维度,是功能成像的理想工具,在生物医学领域有广阔的应用前景。荧光寿命检测经典方法为点对点的时间相关单光子计...

  • 上海植物荧光寿命成像好不好

    为什么说荧光寿命成像FLIM相比于荧光强度成像更有优势?通过荧光强度成像可以获得荧光分子的空间分布,较为直接和简便,但是当荧光分子具有相似的频谱特性,或是同样的荧光分子在不同环境下时,依赖强度进行成像的方案便无法准确反映信息。与基于光强的成像方式不同,荧光寿命成像FLIM适用于测量荧光分子环境的变化,或是测量分子的运动情况。其结果与荧光分子浓度无关,且不受影响光强的光散射或是光吸收影响,可以精确测量荧光淬灭过程,对生物分子微环境进行定量测量。荧光寿命成像可以用于无法控制局部探针浓度的荧光显微镜中。荧光寿命成像特别适用于新材料、光子学、光伏、光催化、生物材料的原理探究和设计优化。上海植物荧光寿命...

  • 广州分子荧光寿命成像多少钱

    荧光寿命成像与传统的使用荧光强度和光谱信息作为鉴别组织异常的成像方式相比,寿命成像提供了更多的生化诊断信息。荧光寿命成像已用于骨骼和牙齿的诊断。另外,采用多光子激发可显著提高组织体的成像深度,如对人体皮肤自体荧光进行多光子激发荧光寿命成像,成像深度达200 um,组织体的荧光寿命分布揭示了细胞代谢状态的变化,可用于对皮肤病的诊断。对腔体中瘤的早期临床诊断,已开发出具有实时及寿命分辨功能的内窥镜,并对离体膀胱样品进行测试,得到了黄素分子的自体荧光寿命图像。荧光寿命成像技术可显示单指数或多指数荧光衰减。广州分子荧光寿命成像多少钱荧光寿命成像的优势是什么?荧光寿命成像具有不同于荧光强度成像的众多优点...

    发布时间:2023.03.05
  • 辽宁开放式荧光寿命成像研发

    荧光寿命成像FLIM所面临的挑战:在数据处理上,由于曲线拟合迭代过程的需求,计算成本较其他成像方案更高。在成像原理上,荧光寿命受多种外界因素影响,这些因素包括分子相互作用、pH值、温度和粘滞阻力等,很难对这些参数控制变量,使得测量荧光寿命存在交叉干扰问题。此外,与普通光学显微技术类似,介质光散射影响成像信噪比及空间分辨率,成像深度受到限制。FLIM已经在系统装置、荧光探针和数据处理算法等方面得到了较快的发展,这也使得荧光寿命成像FLIM在对细胞微环境成像和生物代谢监测发挥出不可替代的作用。为什么说荧光寿命成像技术是先进的?辽宁开放式荧光寿命成像研发为什么说荧光寿命成像技术是先进的?荧光寿命成像...

  • 广州动物荧光寿命成像订购

    荧光成像技术涉及精确测量已添加到组织中的自然荧光分子或荧光标签的荧光衰减率或寿命。由于寿命取决于分子环境的特性,如温度和pH,以及其与周围分子的相互作用,因此可利用荧光成像技术获得有关分子性质及其微环境的信息。通常,使用激光扫描共聚焦显微镜进行荧光成像技术,通过扫描激光束穿过荧光样品以形成图像,从而实现高分辨率。为了在宏观尺度上获得荧光成像的信息,研究人员开发了一种共焦的宏观系统,该系统结合了激光和非常短的脉冲,利用只有皮秒的长度和非常灵敏的检测器来检测荧光。该系统还包括计算光子的电子器件,并绘制它们相对于激光脉冲和样品上激光束位置的时间分布。光寿命成像显微技术已在生命科学领域中得到了普遍的应...

  • 佛山红外荧光寿命成像报价

    影响荧光寿命成像测量的因素:高浓度样品的影响:1)当激发光照射高浓度样品时,在激发光入口附近产生荧光,但这些荧光并不能进入荧光检测器。2)高浓度的分子之间相互作用而发生活性阻碍现象。3)荧光的再吸收:即荧光光谱的短波长端和激发光谱的长波长端如果相互重叠,则发生荧光再吸收。荧光寿命成像具有200 nm的空间分辨率和皮秒量级的时间分辨率。散射光的影响: 主要是瑞利散射光和拉曼散射光的影响较大。校正办法:先用短的激发光激发,检出溶液的拉曼峰,然后进行荧光光谱校正。因为荧光光谱不随激发光波长的改变而改变,而拉曼光却随之改变。荧光寿命成像主要可以用于样品分离。佛山红外荧光寿命成像报价荧光成像技术是一种非...

  • 广东荧光寿命成像批发

    荧光寿命成像是荧光基团在通过发射荧光光子返回基态之前在其激发态下保持平均多长时间的量度。不同荧光基团激发态停时间不同,大多数生物荧光素的荧光寿命时间在 0.2 - 20 ns。荧光寿命检测经典方法为点对点的时间相关单光子计数(TCSPC),但由于过去检测硬件的局限和复杂的使用而没有被普遍地应用于科学研究。随着技术的发展,在显微镜视野内进行超快速全像素荧光寿命信号采集的荧光寿命成像成为可能。荧光寿命成像具有不同于荧光强度成像的众多优点:不受染料浓度的影响,无论染色或免疫荧光的效率高或低,荧光寿命都能呈现一致的数据,这意味着更少的实验数量和重复性更好的实验结果。不受光漂白的影响,荧光发射时间不受激...

  • 广东化学荧光寿命成像报价

    为什么说荧光寿命成像FLIM相比于荧光强度成像更有优势?通过荧光强度成像可以获得荧光分子的空间分布,较为直接和简便,但是当荧光分子具有相似的频谱特性,或是同样的荧光分子在不同环境下时,依赖强度进行成像的方案便无法准确反映信息。与基于光强的成像方式不同,荧光寿命成像FLIM适用于测量荧光分子环境的变化,或是测量分子的运动情况。其结果与荧光分子浓度无关,且不受影响光强的光散射或是光吸收影响,可以精确测量荧光淬灭过程,对生物分子微环境进行定量测量。荧光寿命成像可以用于无法控制局部探针浓度的荧光显微镜中。荧光寿命成像扩展了传统荧光成像的维度,是功能成像的理想工具;广东化学荧光寿命成像报价荧光寿命成像主...

  • 杭州荧光寿命成像研发

    荧光寿命成像的原理:如果分子环境刺激激发态衰变而不发射光子,则荧光强度会降低(淬灭)。荧光淬灭是一条单独的发射路径,因此在动力学上与荧光过程形成竞争关系。激发态存储现在可以通过一个以上的过程衰变,从而缩短荧光寿命。这种寿命的改变可用于收集分子环境的信息。一种特殊类型的淬灭是将激发能量以非辐射的方式传递到相邻的不同荧光染料中:“荧光共振能量转移”,FRET。此时,不只第1个荧光染料(供体)变暗,寿命变短,而且第二个荧光染料(受体)在“错误的”激发颜色下开始发光。由于这种效果的产生需要两种荧光染料(小于10 nm)的密切接触,因此将其用作研究分子相互作用的“分子标尺”。荧光寿命显微成像具有高特异性...

  • 汕头荧光寿命成像制造

    荧光寿命成像与传统的使用荧光强度和光谱信息作为鉴别组织异常的成像方式相比,寿命成像提供了更多的生化诊断信息。荧光寿命成像已用于骨骼和牙齿的诊断。另外,采用多光子激发可显著提高组织体的成像深度,如对人体皮肤自体荧光进行多光子激发荧光寿命成像,成像深度达200 um,组织体的荧光寿命分布揭示了细胞代谢状态的变化,可用于对皮肤病的诊断。对腔体中瘤的早期临床诊断,已开发出具有实时及寿命分辨功能的内窥镜,并对离体膀胱样品进行测试,得到了黄素分子的自体荧光寿命图像。荧光寿命成像中的荧光寿命是什么意思?汕头荧光寿命成像制造荧光寿命成像具有什么优势?荧光寿命成像的优势:通过荧光强度成像可以获得荧光分子的空间分...

  • 福建分子荧光寿命成像大概多少钱

    荧光寿命显微成像优点:荧光寿命显微成像(Fluorescence lifetime imaging microscopy,FLIM)是荧光寿命测量和荧光显微技术的结合,荧光寿命显微成像具有高特异性、高灵敏度、可定量测量微环境变化和分子间相互作用、不受探针浓度、激发光强度和光漂白影响等优点。在过去的十年中,光学技术硬件和软件、材料科学和生物医学的迅速发展,共同促进了FLIM技术及其应用的巨大进步。荧光寿命成像(FLIM)对细胞信号传导及调控,蛋白间的相互作用等生物研究发挥着很大作用。荧光成像技术可以用于手术中神经保护。福建分子荧光寿命成像大概多少钱荧光寿命成像有什么作用?荧光寿命可以在频域或者时...

  • 佛山显微荧光寿命成像哪里有卖

    分子的荧光寿命在几纳秒至几百纳秒之间,因此,测量荧光寿命成像需要极快响应时间的探测器。如今主要存在两类方案:一是时域测量,由一束窄脉冲将荧光分子激发至较高能态S1,接着测量荧光的发射几率随时间的变化。典型的时域测量方法有TCSPC和时间门(TG)两种。TCSPC利用快速秒表测量激发脉冲与探测荧光之间的时间差。使用高重复脉冲激发光激发样品,在每一个脉冲周期内,较多激发荧光分子发出一个光子,然后记录光子出现的时刻,并在该时刻记录一个光子,再下一个脉冲周期内也是相同的情况,经过多次计数可以得到荧光光子随时间的分布曲线。相似的,TG则探测不同时间窗口内的荧光强度,通过曲线拟合得到荧光寿命。二是频域测量...

  • 辽宁单分子荧光寿命成像多少钱

    荧光寿命显微成像技术具有对生物大分子结构、动力学信息和分子环境等进行高分辨高精度测量的能力,因此其重要性日渐提升,被普遍地应用于生物学研究及临床诊断等领域。荧光寿命,分子包含多个能态S0、S1、S2和三重态T1,每个能态都包含多个精细的能级。正常情况下,大部分电子处在较低能态即基态S0的较低能级上,当分子被光束照射,会吸收光子能量,电子被激发到更高的能态S1或S2上,在S2能态上的电子只能存在很短暂的时间,便会通过内转换过程跃迁到S1上,而S1能态上的电子亦会在极短时间内跃迁到S1的较低能级上,而这些电子会存在一段时间后通过震荡弛豫辐射跃迁到基态,这个过程会释放一个光子,即荧光。荧光寿命成像具...

  • 珠海单分子荧光寿命成像怎么用

    影响荧光寿命成像测量的因素:高浓度样品的影响:1)当激发光照射高浓度样品时,在激发光入口附近产生荧光,但这些荧光并不能进入荧光检测器。2)高浓度的分子之间相互作用而发生活性阻碍现象。3)荧光的再吸收:即荧光光谱的短波长端和激发光谱的长波长端如果相互重叠,则发生荧光再吸收。荧光寿命成像具有200 nm的空间分辨率和皮秒量级的时间分辨率。散射光的影响: 主要是瑞利散射光和拉曼散射光的影响较大。校正办法:先用短的激发光激发,检出溶液的拉曼峰,然后进行荧光光谱校正。因为荧光光谱不随激发光波长的改变而改变,而拉曼光却随之改变。荧光寿命成像具高灵敏度、可检测人体生物样品等优点。珠海单分子荧光寿命成像怎么用...

  • 安徽显微荧光寿命成像价格表

    荧光寿命显微成像(Fluorescence lifetime imaging microscopy,FLIM)是荧光寿命测量和荧光显微技术的结合,荧光寿命显微成像具有高特异性、高灵敏度、可定量测量微环境变化和分子间相互作用、不受探针浓度、激发光强度和光漂白影响等优点。荧光寿命成像(FLIM)对细胞信号传导及调控,蛋白间的相互作用等生物研究发挥着很大作用。利用荧光寿命成像显微镜技术可实现可以实时监控发光纳米颗粒在活细胞内的稳定性。在过去的十年中,光学技术硬件和软件、材料科学和生物医学的迅速发展,共同促进了FLIM技术及其应用的巨大进步。荧光寿命成像主要可以用于样品分离。安徽显微荧光寿命成像价格表...

  • 江苏分子荧光寿命成像哪家靠谱

    荧光寿命显微成像技术(FLIM)具有对生物大分子结构、动力学信息和分子环境等进行高分辨高精度测量的能力,因此其重要性日渐提升,被普遍地应用于生物学研究及临床诊断等领域。荧光寿命成像的发展很好地弥补了基于强度成像的问题,对生物医学检测有着重要的意义。荧光的特性包含有:荧光激发和发射光谱、荧光强度、量子效率、荧光寿命等,其中,荧光寿命是指荧光分子在激发态上存在的平均时间(纳秒量级)。分子的荧光寿命在几纳秒至几百纳秒之间,因此,测量荧光寿命需要极快响应时间的探测器。荧光寿命成像可以直接检测荧光和时间分辨的荧光寿命。江苏分子荧光寿命成像哪家靠谱荧光寿命成像和生物发光的不同之处:产生光子的原理不同,类似...

  • 佛山化学荧光寿命成像价格

    荧光成像技术是一种非侵入性成像方法,荧光成像技术可以实时和多维度地清晰地监测生物分子、细胞、组织和生物生物。具有高灵敏度输出、高时间分辨率、非侵入性和低成本。荧光成像在疾病诊断,药物分布和代谢评估以及血管生物成像中得到了普遍的应用。其中一些前瞻性方法在诊断和影像学引导疗治为未来医学发展提供更广阔的道路。除了手术中的成像引导,荧光成像技术还可以用于手术中神经保护,外科手术过程中神经意外横断或损伤,导致患者部分活动功能衰退甚至长久丧失。荧光寿命取决于荧光分子所处的微环境。佛山化学荧光寿命成像价格为什么说荧光寿命成像FLIM相比于荧光强度成像更有优势?通过荧光强度成像可以获得荧光分子的空间分布,较为...

  • 上海显微荧光寿命成像多少钱

    荧光寿命成像的原理:荧光寿命是荧光团在发射荧光光子返回基态之前保持其激发态的平均时间长度。这取决于荧光团的分子组成和纳米环境。荧光寿命成像将寿命测量与成像相结合:对每个图像像素以测得的荧光寿命进行颜色编码,产生额外的图像反差。因此,荧光寿命成像可以提供关于荧光分子空间分布的信息和有关其生化状态或纳米环境的信息。有很多技术可以在显微镜环境中检测荧光寿命。常见的的是基于供体(受体光漂白,FRET AB)或受体(敏化发射,FRET SE)荧光强度的技术。荧光寿命成像不需要考虑跳色的影响,从而免去了计算和去除跳色杂质信号的麻烦;上海显微荧光寿命成像多少钱荧光寿命成像是荧光基团在通过发射荧光光子返回基态...

  • 湖南生物荧光寿命成像研发

    为什么说荧光寿命成像技术是先进的?荧光寿命成像可以提供荧光强度(光子数)和光子寿命的空间分布,具有200 nm的空间分辨率和皮秒量级的时间分辨率。通过双光子激发(结合飞秒脉冲和共焦显微镜)可以直接检测荧光和时间分辨的荧光寿命。这种无损检测技术,无需解剖或专门制造分层样品,不但可在样品表面,还可在样品表面以下实现深度解析测量。特别适用于新材料、光子学、光伏、光催化、生物材料、纳米材料和纳米复合材料以及其相关的原理探究和设计优化。荧光寿命成像不受光漂白的影响。湖南生物荧光寿命成像研发荧光寿命成像技术是怎么运作的?通过建立检测到的荧光事件的直方图来确定寿命。可显示单指数或多指数荧光衰减。数值曲线拟合...

  • 广州开放式荧光寿命成像好不好

    为什么说荧光寿命成像FLIM相比于荧光强度成像更有优势?通过荧光强度成像可以获得荧光分子的空间分布,较为直接和简便,但是当荧光分子具有相似的频谱特性,或是同样的荧光分子在不同环境下时,依赖强度进行成像的方案便无法准确反映信息。与基于光强的成像方式不同,荧光寿命成像FLIM适用于测量荧光分子环境的变化,或是测量分子的运动情况。其结果与荧光分子浓度无关,且不受影响光强的光散射或是光吸收影响,可以精确测量荧光淬灭过程,对生物分子微环境进行定量测量。荧光寿命成像可以用于无法控制局部探针浓度的荧光显微镜中。荧光寿命成像通常来讲是一定的,不受激发光强度、荧光团浓度等因素的影响。广州开放式荧光寿命成像好不好...

  • 上海单分子荧光寿命成像使用方法

    荧光寿命成像的优势:通过荧光寿命来进行成像,只需要拍摄一次就完成图像采集,不但减少了成像时间,而且降低了激光对样品的损伤。荧光寿命成像使用简单,方便快捷,不需要进行参数调节。荧光寿命成像提供了寿命分布的二维图形视图。荧光寿命是荧光分子在激发态停留的时间,这个时间可以反映荧光分子的内在属性和所处的微环境,是一个很有用的工具。以往,荧光寿命的测量和计算是件非常复杂和耗时的工作,只有少数专业的科学家关注和使用该工具。传统的多色成像实验根据光谱差异来设计,会有串色等限制,而且需要多次采集图像,会造成样品的光损伤。由于荧光寿命成像不受样品浓度影响,具有其他荧光成像技术无法代替的优异性能。上海单分子荧光寿...

  • 江苏荧光寿命成像怎么操作

    荧光寿命成像和生物发光的不同之处:产生光子的原理不同,类似于我们都是通过肉眼去观察萤火虫和发光水母一样,生物发光与荧光成像在本质上,都是机体中特定的细胞或材料发出光子,被高灵敏度的CCD检测到形成图像,但是生物发光与荧光寿命成像产生光子的过程和机制是完全不同的。生物发光与荧光成像相同点:都需要对细胞进行标记。生物发光产生的光子和荧光寿命成像产生的光子都可以被高灵敏的CCD检测并形成图像,就像一个人的眼睛就可以既看到萤火虫又可以看到发光水母一样。荧光寿命(FLT)是荧光团在发射光子并返回基态之前花费在激发态的时间。根据荧光基团的不同,FLT可以从皮秒到数百纳秒不等。荧光寿命(FLT)是荧光团在发...

  • 佛山显微荧光寿命成像有哪些

    荧光寿命显微成像技术(FLIM)具有对生物大分子结构、动力学信息和分子环境等进行高分辨高精度测量的能力,因此其重要性日渐提升,被普遍地应用于生物学研究及临床诊断等领域。荧光寿命成像的发展很好地弥补了基于强度成像的问题,对生物医学检测有着重要的意义。荧光的特性包含有:荧光激发和发射光谱、荧光强度、量子效率、荧光寿命等,其中,荧光寿命是指荧光分子在激发态上存在的平均时间(纳秒量级)。分子的荧光寿命在几纳秒至几百纳秒之间,因此,测量荧光寿命需要极快响应时间的探测器。荧光寿命成像的发展很好地弥补了基于强度成像的问题,对生物医学检测有着重要的意义。佛山显微荧光寿命成像有哪些荧光寿命成像主要应用领域包括:...

  • 多色荧光寿命成像研发

    荧光寿命成像是一种什么样的技术?是一种新型的荧光成像技术,它能够对不同种类或处于不同状态的生物组织提供更好的对比度,并反映荧光团及其所处微环境参数的定量分布。荧光寿命成像一般不受诸如激光或荧光强度扰动、荧光染料分布不均匀、染料的光漂白以及其他有碍荧光强度的因素的影响,是荧光光谱分析法的有效补充。超快激光技术,高速、高灵敏度探测技术,以及图像处理技术的发展,都促进了FLIM 技术的发展.尤其是将荧光寿命成像和共焦显微技术以及多光子激发荧光显微技术结合,进一步拓宽了FLIM在生物学领域的应用范围。荧光寿命成像主要应用领域包括:用于样品分离。多色荧光寿命成像研发荧光寿命成像的原理:荧光寿命是荧光团在...

  • 广东生物荧光寿命成像供货商

    荧光寿命成像主要应用领域包括:用于样品分离,如利用不同染料荧光寿命的差异将不同组织、正常与病变细胞等有效分离。荧光团在光谱上非常相似(max 580 vs 573)无法分离,但它们在荧光寿命上差异明显。作为生物传感器,如评价药物/理化条件对细胞的影响、Ca+震荡等。充分拓展了寿光命成像的使用范围,实现可相互验证的多维度样品成像。实现真正的生物动力学分析和功能成像。荧光寿命成像的发展很好地弥补了基于强度成像的问题,对生物医学检测有着重要的意义。利用荧光寿命成像显微镜技术可实现可以实时监控发光纳米颗粒在活细胞内的稳定性。广东生物荧光寿命成像供货商荧光寿命成像的优势:通过荧光寿命来进行成像,只需要拍...

1 2 3 4 5 6 7 8 ... 11 12