您好,欢迎访问

商机详情 -

龙华区特制片式电感是什么

来源: 发布时间:2024年06月24日

1、半导体收音机用振荡线圈:此振荡线圈在半导体收音机中与可变电容器等组成本机振荡电路,用来产生一个输入调谐电路接收的电台信号高出465kHz的本振信号。其外部为金属屏蔽罩,内部由尼龙衬架、工字形磁心、磁帽及引脚座等构成,在工字磁心上有度漆包线绕制的绕组。磁帽装在屏蔽罩内的尼龙架上,可以上下旋转动,通过改变它与线圈的距离来改变线圈的电感量。电视机中频陷波线圈的内部结构与振荡线圈相似,只是磁帽可调磁心。2、电视机用行振荡线圈:行振荡线圈用在早期的黑白电视机中,它与的阻容元件及行振荡晶体管等组成自激振荡电路(三点式振荡器或间歇振荡器、多谐振荡器),用来产生频率为15625HZ的的矩形脉冲电压信号。他们可能只给出了温度高于环境温度40℃时的直流电流。龙华区特制片式电感是什么

龙华区特制片式电感是什么,片式电感

绕线型它的特点是电感量范围广(mH~H),电感量精度高,损耗小(即Q大),容许电流大、制作工艺继承性强、简单、成本低等,但不足之处是在进一步小型化方 面受到限制。陶瓷为芯的绕线型片电感器在这样高的频率能够保持稳定的电感量和相当高的Q值,因而在高频回路中占据一席之地。TDK的NL系列电感为绕线型,0.01~100uH,精度5%,高Q值,可以满足一般需求。NLC型 适用于电源电路,额定电流可达300mA;NLV型为 高Q值,环保(再造塑料),可与NL互换;NLFC 有磁屏,适用于电源线。龙华区特制片式电感是什么使用磁环时,对照上面的磁环部分,找出对应的l值,对应材料的使用范围。

龙华区特制片式电感是什么,片式电感

(二)CMOS器件的保护闭锁现象是CMOS器件结构的固有现象,主要由外部因素引起,而且是很随机的。一旦引发是很难恢复的,的办法就是断掉芯片上的电源。对它的保护我们可以通过并联多层压敏电阻器来防止上述现象的产生,一个多层片式压敏电阻器与接地端串联,就可消除大部分由于输入过电压引起的闭锁现象。此外在输入端与接地端之间另外接一个多层片式压敏电阻器,也可以有效地帮助保护静态放电引起的瞬态浪涌电压产生的闭锁现象。(三)汽车电路系统的保护随着表面安装技术的广泛应用,使得汽车电路需要体积小、能封装于线路板中的电子元件,且具有良好的电气特性。

片式电感器亦称表面贴装电感器,它与其它片式元器件(SMC及SMD)一样,是适用于表面贴装技术(SMT)的新一代无引线或短引线微型电子元件。其引出端的焊接面在同一平面上。片式电感器源于有引线多层瓷介电容器的芯片直接用于混合集成电路(HIC)的贴装。早在60年代,美国JDI、Sprague公司就开始生产。1977年,日本松下公司在超薄型半导体收音机这类消费类电子产品中,首先采用了SMT和SMC及SMD工艺。,为适应SMT需要,开始了片式电感器的研究开发,并很快实现了产业化。在这条曲线上可以查到额定饱和电流(ISAT)。

龙华区特制片式电感是什么,片式电感

而与此同时,磁芯的损耗(涡流损耗) 却在增加。后者等效为损耗电阻,电阻成分的增加,导致磁珠在线路上的总阻抗依然在增加,所以当高频干扰通过铁氧体时,磁珠对高频干扰的阻挡作用依然在增 加,不过这次磁珠不是将高频干扰反射回干扰源,而是将高频干扰转换成热能的形式给耗散掉了。这样看来,电感器和磁珠在结构上没有本质性的不同,但是从抑制干扰的机理(依照抑制干扰的频率范围来划分)来说,两者明显是不同的,一个是将干扰反射回干扰源(指电感),另一个是将干扰吸收掉(指磁珠)。电感线圈有阻止交流电路中电流变化的特性。深圳质量片式电感性能

表面贴装高功率电感。龙华区特制片式电感是什么

多层片式压敏电阻器正好适应这种要求。在汽车电路中经常会产生许多瞬态浪涌脉冲,这是人们容易理解的事情。如当发电机正在给蓄电池充电时,突然负载断开,瞬态浪涌电压的峰值可达到125V,延续时间200-400ms。另外,汽车突然启动,也会产生很高的瞬态浪涌电压,且延续3-5min.汽车的点火脉冲可产生75V的电压,延续90min,其他的瞬态浪涌电压来源于汽车电子线路中的继电器动作和电磁开关的动作。目前国际上普遍采用多层片式压敏电阻器对上述浪涌电压进行有效抑制,以避免对汽车线路的危害。龙华区特制片式电感是什么

爱普微科技(深圳)有限公司汇集了大量的优秀人才,集企业奇思,创经济奇迹,一群有梦想有朝气的团队不断在前进的道路上开创新天地,绘画新蓝图,在广东省等地区的电工电气中始终保持良好的信誉,信奉着“争取每一个客户不容易,失去每一个用户很简单”的理念,市场是企业的方向,质量是企业的生命,在公司有效方针的领导下,全体上下,团结一致,共同进退,**协力把各方面工作做得更好,努力开创工作的新局面,公司的新高度,未来爱普微科技供应和您一起奔向更美好的未来,即使现在有一点小小的成绩,也不足以骄傲,过去的种种都已成为昨日我们只有总结经验,才能继续上路,让我们一起点燃新的希望,放飞新的梦想!