您好,欢迎访问

商机详情 -

宝安区优势共模电感设计

来源: 发布时间:2024年05月02日

一阶滤波器设计一阶(单极点)共模滤波器简单和廉价的滤波器就是一阶滤波器。这类滤波器使用一个电抗性元件来存储一定频段的能量,与此同时,其并不把能量传送到负载。就低通共模滤波器而言,采用的电抗性元件是共模扼流圈。为一阶低通滤波器选择扼流圈时应多加注意,因为选取的值远大于典型的或小的电感值会限制扼流圈的有效衰减频段。二阶滤波器设计二阶滤波器采用两个电抗性元件, 这种结构安排较一阶滤波器而言,具有两个优点:a) 理想地,二阶滤波器在截止频率之上提供每倍频程12dB 的衰减(是一阶滤波器的四倍);b) 在电感谐振频点之上可以具有更大的衰减。因为差模磁通是远离磁芯(环形结构)的,因此可能会产生极强的辐射。宝安区优势共模电感设计

宝安区优势共模电感设计,共模电感

共模滤波器通常采用铁氧体磁心,双线并绕。 低差模噪声信号抑制干扰源,在高速信号中难以变形。 杂讯抑制对策佳,高共模噪音抑制和低差模噪声信号抑制。国产彩色电视机模滤波器外形及电原理图如图所示 [1]  。是消除开关电源特有的“开关干扰”,以保证电视机自身和电网中的其它设备免除干扰。共模滤波电路如图所示 [1]  。采用铁氧体磁心,双线并绕。 低差模噪声信号抑制干扰源,在高速信号中难以变形。 杂讯抑制对策佳,高共模噪音抑制和低差模噪声信号抑制。龙华区品牌共模电感供应商共模电感缺失=防EMI性能低下?这样的说法显然是颇为片面的。

宝安区优势共模电感设计,共模电感

6.共模扼流圈内存在的差模与共模磁通为了快速且浅显地介绍共模扼流圈的作用,可考虑采用以下论述:“共模扼流圈管芯两侧的磁场相互抵消,因此不存在磁通使管芯饱和。”尽管这种论述对共模扼流圈作用的直觉叙述具体化了,但实质上并非如此。7.漏感综述共模扼流圈能发挥一定的作用是由于μcm比μdm大好几个数量级的缘故,因为共模电流通常很小,可以通过使L/D保持在较低值来获得更小的μdm。为了得到共模电感,同时又要使差模电感小,是采用横截面积较大的磁芯绕制成多匝线圈。

电感器电感量的大小,主要取决于线圈的圈数(匝数)、绕制方式、有无磁心及磁心的材料等等。通常,线圈圈数越多、绕制的线圈越密集,电感量就越大。有磁心的线圈比无磁心的线圈电感量大;磁心导磁率越大的线圈,电感量也越大。电感量的基本单位是亨利(简称亨),用字母"H"表示。常用的单位还有毫亨(mH)和微亨(μH),它们之间的关系是:1H=1000mH1mH=1000μH感抗电感线圈对交流电流阻碍作用的大小称感抗XL,单位是欧姆,符号Ω。它与电感量L和交流电频率f的关系为XL=2πfL只有了解了板卡整体的防EMI设计,我们才可以评价板卡的优劣。

宝安区优势共模电感设计,共模电感

线电流监视器作为触发源。不过,使用电流探头的一个隐患是差模电流衰减是管芯内绕组导线对称性的函数。如果精心合理安排绕线布局的话,30dB左右的差模电流衰减是能够得到的。即使达到这个衰减值,测得的差模分量也可能超过预期的共模分量值。可用如下两项技术来解决这一问题:将一只6kHz转折频率的高阶高通滤波器与示波器串联(注意应用50的终端阻抗进行匹配)。第二,在每只10μF的电容与电源总线之间接入一根导线。为了测量共模辐射,电流探头应夹在这些载有极小线电流的导线近旁。当共模扼流圈工作在线性区时,在输入电流波动期间,B通道监测到的发射增加值不超过6—10dB。坪山区特制共模电感销售

为了测量共模辐射,电流探头应夹在这些载有极小线电流的导线近旁。宝安区优势共模电感设计

以主板上的两条PCB走线(连接主板各元件的导线)为例,所谓串模干扰,指的是两条走线之间的干扰;而共模干扰则是两条走线和PCB地线之间的电位差引起的干扰。串模干扰电流作用于两条信号线间,其传导方向与波形和信号电流一致;共模干扰电流作用在信号线路和地线之间,干扰电流在两条信号线上各流过二分之一且同向,并以地线为公共回路。如果板卡产生的共模电流不经过衰减过滤(尤其是像USB和IEEE 1394接口这种高速接口走线上的共模电流),那么共模干扰电流就很容易通过接口数据线产生电磁辐射——在线缆中因共模电流而产生的共模辐射。宝安区优势共模电感设计

爱普微科技(深圳)有限公司汇集了大量的优秀人才,集企业奇思,创经济奇迹,一群有梦想有朝气的团队不断在前进的道路上开创新天地,绘画新蓝图,在广东省等地区的电工电气中始终保持良好的信誉,信奉着“争取每一个客户不容易,失去每一个用户很简单”的理念,市场是企业的方向,质量是企业的生命,在公司有效方针的领导下,全体上下,团结一致,共同进退,**协力把各方面工作做得更好,努力开创工作的新局面,公司的新高度,未来爱普微科技供应和您一起奔向更美好的未来,即使现在有一点小小的成绩,也不足以骄傲,过去的种种都已成为昨日我们只有总结经验,才能继续上路,让我们一起点燃新的希望,放飞新的梦想!