您好,欢迎访问

商机详情 -

宝安区什么是APV电感设计

来源: 发布时间:2024年01月08日

注意:磁珠的单位是欧姆,而不是亨利,这一点要特别注意。因为磁珠的单位是按照它在某一频率产生的阻抗来标称的,阻抗的单位也是欧姆。铁氧体磁珠 (Ferrite Bead) 是应用发展很快的一种抗干扰组件,廉价、易用,滤除高频噪声效果。铁氧体磁珠还广泛应用于信号电缆的噪声滤除。磁珠参数主要包括:初始磁通量(U值) 居里温度 工作频率磁通量高U的磁饱合度低,即磁珠在低频能够承受的电流越大,感抗随电流变化而呈容抗。磁珠发热也就是讲磁芯损耗太大,把功率转化为热能,而没有转化为磁能,把能量消耗掉了。可以根据它对电磁干扰的抑制原理,合理使用它的抑制作用。宝安区什么是APV电感设计

宝安区什么是APV电感设计,APV电感

②去耦:并接于电路电源接线的正负极之间,可防止各部分电路通过电源内阻引起的相互干扰(严重时还会产生寄生振荡)。③旁路:并接在电阻两端或由某点直接跨接至共用电位点,为交直流信号中的交流或脉动信号设置一条通路,避免交流成分在通过电阻时产生压降。片式电容器在设备中的电磁干扰抑制,实际上只是片式电容器在电路中应用的一个方面,只不过为了突出《片式电磁兼容对策器件》中的“对策”作用,才把它专门列成一节。上面讲到的电源线路滤波和去耦也是设备电磁干扰抑制应用的一部分。此外还有信号线的共模滤波,信号线和电源线的辐射抑制等。深圳质量APV电感品牌从过往的实验结果看,55度时,那些EMI磁环还没有出现输出功率下降的情况。

宝安区什么是APV电感设计,APV电感

电感和磁珠的什么联系与区别1、电感是储能元件,而磁珠是能量转换(消耗)器件2、电感多用于电源滤波回路,磁珠多用于信号回路,用于EMC对策3、磁珠主要用于抑制电磁辐射干扰,而电感用于这方面则侧重于抑制传导性干扰。两者都可用于处理EMC、EMI问题。EMI的两个途径,即:辐射和传导,不同的途径采用不同的抑制方法。前者用磁珠,后者用电感。4、磁珠是用来吸收超高频信号,象一些RF电路,PLL,振荡电路,含超高频存储器电路(DDRSDRAM,RAMBUS等)都需要在电源输入部分加磁珠,而电感是一种蓄能元件,用在LC振荡电路,中低频的滤波电路等,其应用频率范围很少超过50MHZ。

常用的陶瓷介质的主要成分是MgTiO3、CaTiO3、SrTiO3和TiO2再加入适量的稀土类氧化物等配制而成。其特点是介质系数较大、介质损耗低、温度系数小、环境温度适用范围广和高频特性好,用在要求较高的场合(I类瓷介电容器)中。另一类是低频高介材料称为强介铁电陶瓷,常用作Ⅱ类瓷介电容器的介质,一般以BaTiO3为主体的铁电陶瓷,其特点是介电系数特别高,达到数千,甚至上万;但是介电系数随温度呈非线性变化,介电常数随施加的外电场也有非线性关系。要正确的选择磁珠,必须注意以下几点: 不需要的信号的频率范围为多少。

宝安区什么是APV电感设计,APV电感

当贴片电感通过的电流变化时,贴片电感中产生的直流电压势将阻止电流的变化。当通过电感线圈的电流增大时,电感线圈产生的自感电动势与电当通过电感线圈的电流减小时,自感电动势与电流方向相同,阻止电流的减小,同时释放出存储的能量,以补偿电流的减小。流方向相反,阻止电流的增加,同时将一部分电能转化成磁场能存储于电感之中;因此经电感滤波后,不但负载电流及电压的脉动减小,波形变得平滑,而且整流二极管的导通角增大。在体积一定时,长而细的形状比短而粗的抑制效果好,内径越小抑制效果也越好。宝安区什么是APV电感设计

因此磁环和磁珠实际上对高频成分起吸收作用,所以有时也称之为吸收滤波器。宝安区什么是APV电感设计

但在有直流或交流偏流的情况下,还存在铁氧体饱和的问题,抑制元件横截面越大,越不易饱和,可承受的偏流越大。EMI吸收磁环/磁珠抑制差模干扰时,通过它的电流值正比于其体积,两者失调造成饱和,降低了元件性能;抑制共模干扰时,将电源的两根线(正负)同时穿过一个磁环,有效信号为差模信号,EMI吸收磁环/磁珠对其没有任何影响,而对于共模信号则会表现出较大的电感量。磁环的使用中还有一个较好的方法是让穿过的磁环的导线反复绕几下,以增加电感量。宝安区什么是APV电感设计

爱普微科技(深圳)有限公司汇集了大量的优秀人才,集企业奇思,创经济奇迹,一群有梦想有朝气的团队不断在前进的道路上开创新天地,绘画新蓝图,在广东省等地区的电工电气中始终保持良好的信誉,信奉着“争取每一个客户不容易,失去每一个用户很简单”的理念,市场是企业的方向,质量是企业的生命,在公司有效方针的领导下,全体上下,团结一致,共同进退,**协力把各方面工作做得更好,努力开创工作的新局面,公司的新高度,未来爱普微科技供应和您一起奔向更美好的未来,即使现在有一点小小的成绩,也不足以骄傲,过去的种种都已成为昨日我们只有总结经验,才能继续上路,让我们一起点燃新的希望,放飞新的梦想!